
Solving problems by searching

Dr. Ayad Ibrahim Abdulsada, Basrah Uni., Education Coll., Computer Sci. Dept. 2016-2017

1

SOLVING PROBLEMS BY SEARCHING

This chapter describes one kind of goal-based agent called a problem-solving agent.

PROBLEM-SOLVING AGENTS
We will consider the problem of designing goal-based agents in fully observable, deterministic, discrete,
known environments.

 Under these assumptions, the solution in any problem is a, fixed sequence of actions.

 The process of looking for a sequence of actions that reaches the goal is called search.

 A search algorithm takes a problem as input and returns a solution in the form of an
action sequence.

 Notice that while the agent is executing the solution sequence it ignores its percepts
when choosing an action because it knows in advance what they will be (open-loop
system).

A problem can be defined formally by five components:
1- Initial state.
2- Set of actions.
3- Transition model (the result of each action)

 State space = initial state + set of actions + transition model.

 State space can be formed by graph in which the nodes are states and the links between
nodes are actions.

 A path in the slate space is a sequence of states connected by a sequence of actions.
4- The goal test: determines which state is a goal.
5- A path cost function: that assigns a numeric cost to each path.

 A solution to a problem is an action sequence that leads from the initial state to a goal
state.

 An optimal solution has the lowest path cost among all solutions.

Problems examples:

1- Rout-finding problem: travel from Arad city to Bucharest city with a minimum cost.
Initial state

 Arad city
Actions

 Go from one city to another
Transition model

 If you go from city A to
 city B, you end up in city B

Goal state
 Bucharest city

Path cost
 Sum of edge costs

Solving problems by searching

Dr. Ayad Ibrahim Abdulsada, Basrah Uni., Education Coll., Computer Sci. Dept. 2016-2017

2

 2- Puzzles
 States

 Locations of tiles
 8-puzzle: 8!= 181,440 states
 15-puzzle:15!= 1.3 trillion states

 24-puzzle:24!= 2510 states
Actions

 Move blank: left, right, up, down
Path cost

 1 per move

3- The traveling salesperson problem (TSP) is a touring problem in which each city must be
visited exactly once. The aim is to find the shortest tour.

Tree Search
The possible action sequences starting at the initial state form a search tree with the initial state
at the root; the branches are actions and the nodes correspond to states in the state space of the
problem.

Tree search Algorithm

• Let’s begin at the start node and expand it by making a list of all possible successor
states.

• Maintain a fringe or a list of unexpanded states.

• At each step, pick a state from the fringe to expand.

• Keep going until you reach the goal state.

• Try to expand as few states as possible.

A search strategy is defined by picking the order of node expansion.
initial state:

expansion:

Solving problems by searching

Dr. Ayad Ibrahim Abdulsada, Basrah Uni., Education Coll., Computer Sci. Dept. 2016-2017

3

Search Algorithms evaluation

We can evaluate an algorithm's performance in four ways:

1- Completeness: Is the algorithm guaranteed to find a solution when there is one?
2- Optimality: Does the strategy find the optimal solution?
3- Time complexity: How long does it take to find a solution?
4- Space complexity: How much memory is needed to perform the search?

Complexity is expressed in terms of three quantities:

- The branching factor (b): maximum number of successors of any node.

- The depth (d): the number of steps along the path from the root to the goal.

- The maximum length (m) of any path in the state space.

Search Strategies:

Search strategies can be classified into:

- Uninformed (blind search) and

- Informed (heuristic) search.

The first one has no additional information about states beyond what provided in problem

definition.

Uninformed search strategies

1- Breadth-first search

 Algorithm: Breadth-first search is a simple strategy in which the root node is expanded first,

then all the successors of the root node are expanded next, then their successors, and so on.

 Implementation: by using a FIFO queue for the fringes. Thus, new nodes go to the back of the
queue, and old nodes, which are shallower than the new nodes, get expanded first.

Solving problems by searching

Dr. Ayad Ibrahim Abdulsada, Basrah Uni., Education Coll., Computer Sci. Dept. 2016-2017

4

 Properties: - Complete if b and d are finites.
- Optimal if all steps have the same cost.

- Time and space complexity is O(bd) (bad feature).

2- Uniform-cost search (Dijkstra's Algorithm)

 Algorithm: expands the node n with the lowest path cost g(n).
 * g(n) is the cost from the root to the node n.
 * this algorithm equals breadth-first search if g(n)=1 for all n.
Implementation: fringe is a queue ordered by path cost (priority queue).

Solving problems by searching

Dr. Ayad Ibrahim Abdulsada, Basrah Uni., Education Coll., Computer Sci. Dept. 2016-2017

5

Properties:

- Complete: is guaranteed provided the cost of every step exceeds some small
positive constant e.

- Optimal: yes.
- Complexity: Uniform-cost search is guided by path costs rather than depths, so

its complexity is not easily characterized in terms of b and d. Instead, let C* be

the cost of the optimal solution, and assume that every action costs at least e.

Then the algorithm's worst-case time and space complexity is O(eCb /*)

Solving problems by searching

Dr. Ayad Ibrahim Abdulsada, Basrah Uni., Education Coll., Computer Sci. Dept. 2016-2017

6

3- Depth-first search
 Algorithm: expands the deepest node in the current fringe of the search tree.
 Implementation: uses a LIFO stack.

Properties:
- Complete: Fails in infinite-depth spaces
- Optimal: No – returns the first solution it finds

- Time: Could be the time to reach a solution at maximum depth m: O(mb). Terrible if m is much
larger than d
- Space: O(bm), i.e., linear space! (good feature).

4- Iterative deepening depth-first search
 Algorithm: call depth-first search but it gradually increasing the deep limit—first 0, then 1, then
2, and so on—until a goal is found.
* Iterative deepening combines the benefits of depth-first and breadth-first search.
* Iterative deepening is the preferred uninformed search method when the search space is large
and the depth of the solution is not known.

Solving problems by searching

Dr. Ayad Ibrahim Abdulsada, Basrah Uni., Education Coll., Computer Sci. Dept. 2016-2017

7

Properties:

- Complete: Yes

- Optimal: Yes, if step cost = 1

- Time: db + (d-1) 2b + … + (1)b = O(bd).

- Space: O(bd).

Informal search strategies
 Informed search strategy uses knowledge beyond the definition of the problem itself. It can find
solutions more efficiently than can an uninformed strategy. Such a strategies uses a heuristic

function, h(n) to select the next node. h(n) is the estimated cost of the cheapest path from the
state at node n to a goal state.

1- Greedy best-first search

Algorithm: expand the node that has the lowest value of the heuristic function h(n).
* it is not optimal but efficient search.

In the following example, the heuristic functions h(n) is straight line distance between the
node n and the goal.

Solving problems by searching

Dr. Ayad Ibrahim Abdulsada, Basrah Uni., Education Coll., Computer Sci. Dept. 2016-2017

8

Properties:

- Complete: No. Consider the problem of getting from Iasi to Fagaras. The heuristic suggests that
Neamt be expanded first because it is closest to Fagaras, but it is a dead end.

- Optimal: No. The path via Sibiu and Fagaras to Bucharest is 32 kilometers longer than the path
through Rimnicu Vilcea and Pitesti.
- Time:

 * Worst case: O(mb)
 * Best case: O(bd), If h(n) is 100% accurate
- Space:

 * Worst case: O(mb)

Solving problems by searching

Dr. Ayad Ibrahim Abdulsada, Basrah Uni., Education Coll., Computer Sci. Dept. 2016-2017

9

2- A* Search

• Algorithm: expand the node that has the lowest value of the evaluation function f(n):

f(n) = g(n) + h(n)

Where, g(n): cost so far to reach n (path cost), h(n): estimated cost from n to goal (heuristic).

Example:

Solving problems by searching

Dr. Ayad Ibrahim Abdulsada, Basrah Uni., Education Coll., Computer Sci. Dept. 2016-2017

10

Conditions for optimality: Admissibility and consistency

We have one of the two conditions to make A* optimal:

1- A heuristic h(n) should be admissible for every node n, h(n) ≤ h*(n), where h*(n) is the true

cost to reach the goal state from n.

• Example: straight line distance never overestimates the actual road distance.

2- Heuristic h(n) should be consistent, for every (x, y) nodes, h(x) h(y)+d(x,y), where d(x,y)

is the step cost between x and y. (Stronger condition)

For example: h(Sibiu) < h(Rimnicu Vikea) + d(Sibiu, Rimnicu Vikea)

 = 253 < 193+80

 = 253 < 273

* If h is a consistent heuristics, then f = g + h is non-decreasing along paths.
Hence, the values of f on the sequence of nodes expanded by A* is non-decreasing: the first path

found to a node is also the optimal path) no need to compare costs!

Properties:

- Complete: Yes – unless there are infinitely many nodes with f(n) ≤ C*
- Optimal: Yes
- Time: Number of nodes for which f(n) ≤ C* (exponential)
- Space: Exponential

Solving problems by searching

Dr. Ayad Ibrahim Abdulsada, Basrah Uni., Education Coll., Computer Sci. Dept. 2016-2017

11

Local Search Algorithms and Optimization problem

Local search algorithms operate using a single current node (rather than multiple paths) and
generally move only to neighbors of that node. In such algorithms we don’t have a start state,
don’t care about the path to a solution.

Local search algorithms are useful for solving pure optimization problems, in which the aim is
to find the best state according to an objective function.

Objective function tells us about the quality of a possible solution, and we want to find a good
solution by minimizing or maximizing the value of this function.

Hill-climbing search

Idea: keep a single ―current‖ state and try to locally improve it.

Algorithm:

- Initialize current to starting state

- Loop:

– Let next = highest-valued successor of current

– If value(next) < value(current) return current

– Else let current = next

Example: n-queens problem

• Put n queens on an n × n board with no two queens on the same row, column, or

diagonal

 - State space: all possible n-queen configurations

 - Objective function: number of pairwise conflicts

What’s a possible local improvement strategy?

Solving problems by searching

Dr. Ayad Ibrahim Abdulsada, Basrah Uni., Education Coll., Computer Sci. Dept. 2016-2017

12

– Move one queen within its column to reduce conflicts.

Disadvantage:
 * Hill-climbing algorithms that reach the vicinity of a local maximum will reaches a point at
which no progress is being made.
* A hill-climbing search might get lost on the flat local maximum or shoulder areas.

Starting from a randomly generated 8-queens state, steepest-ascent hill climbing gets stuck 86%
of the time, solving only 14% of problem instances.

Random-restart hill climbing conducts a series of hill-climbing searches from randomly
generated initial states until a goal is found.

